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Gradient Method for Nonconvex Functions

Gradient method for a ω-smooth, nonconvex, lower bounded f :

xt+1 := xt → ω
→1

·↑f(xt).

Let ! := f(x0)→ inf f < ↓.

By descent lemma, we have

min
0↑t↑T

↔↑f(xt)↔ ↗ C

√
ω!

T + 1
.

Two Observations.

↭ there exists an ε-stationary point xt, i.e., ↔↑f(xt)↔ ↗ ε, in {xt}
T
t=1, where T can

be set as O(ω!/ε
2) a prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria priori.

↭ such a point xt ↘ {xt}
T
t=1 can be identified e!ciently by evaluating and

comparing {↔↑f(xt)↔}Tt=1.
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Nonconvex Nonsmooth Functions

Pervasive in Modern Data Science.

↭ modern neural networks:

↭ (leaky) ReLU, max pooling, hinge loss, GANs, etc.

↭ max-a!ne regression, robust SVM, etc.

Figure: A nonconvex, nonsmooth, PA function.

Lai Tian (CUHK) January 13, 2025 4 / 25



Nonconvex Nonsmooth Functions

Pervasive in Modern Data Science.

↭ modern neural networks:

↭ (leaky) ReLU, max pooling, hinge loss, GANs, etc.

↭ max-a!ne regression, robust SVM, etc.

An Immediate Question.

↭ what is the notion of “approximate stationarity” mimicking

↔↑f(xt)↔ ↗ ε,

and how to compute it?
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Nonconvex Nonsmooth Functions (cont’d)

Two Generalized Notions.

↭ di”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiationdi”erentiation

↭ replace ↑f with generalized (Clarke) subdi”erential ϑf :

ϑf(x) := conv
{
g : ≃xn ⇐ x,↑f(xn) exists,↑f(xn) ⇐ g

}
.

↭ ϑf(x) = {↑f(x)} if f is C
1
; convex subdi”. if f is convex.

↭ approximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximationapproximation

↭ replace ↔ · ↔ ↗ ε with something computable.

↭ a trivial idea: we say x is ε-stationary if 0 ↘ ϑf(x) + εB,
or equivalently, dist(0, ϑf(x)) ↗ ε.

An ε-Stationary Point is Uncomputable.

↭ if f(x) = |x→ ϖ|, then dist(0, ϑf(Q)) ⇒ 1.

↭ we need a computable notion of approximation.
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Near-Approximate Stationarity (NAS)

Definition (near-approximate stationarity; NAS)

We say x is an (ε, ϱ)-NAS point of f , if

0 ↘ ϑf(x+ ϱB) + εB.

↭ recall ϑf(x) =
⋂

ω>0 ϑf(x+ ϱB).
↭ also, (ε, 0)-NAS is ε-stationarity.
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Subgradient Method

↭ let a lower-bounded semialgebraic (e.g., PA) f be given.

↭ consider a subgradient-type method:

xn+1 := xn → ςn · gn with gn ↘ ϑf(xn).

↭ (Davis et al. ’20) shows that if xn ⇐ x↓
, then 0 ↘ ϑf(x↓).

↭ in other words, for any ε ⇒ 0 and ϱ > 0, there exists a finite N such that xN is

(ε, ϱ)-NAS, or equivalently,

0 ↘ ϑf(xN + ϱB) + εB.

↭ unlike the smooth case, (T.-So, MP ’24) shows that a prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria prioria priori estimation of N is

impossible, even when f is PA.

↭ Question. how can we identify such an xN from {xn}n?

• Stochastic subgradient method converges on tame functions, FoCM ’20.
• No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP ’24.
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Testing NAS: What and Why?

Given f : Rd
⇐ R, x ↘ Rd

, and ε, ϱ ⇒ 0, decide whether

0 ↘ ϑf(x+ ϱB) + εB.

Why is Testing Interesting?

↭ why not? a “dual” task to finding stationary points.

↭ a universal stopping rule pertains to finite termination.

↭ quoting L. Vandenberghe for subgradient method in ECE236C:

(even for convex nonsmooth f) “no good stopping criterion.”

↭ if f is nonconvex nonsmooth (e.g., PA), when to stop?
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Piecewise A!ne (PA) Functions

Theorem (Melzer ’86)

Any PA function f : Rd
⇐ R can be written as the di”erence of two convex PA

functions h, g : Rd
⇐ R, i.e., f = h→ g.

Remarks.

↭ analytic approximation of piecewise smooth functions.

↭ we will consider h, g (locally) as support functions of projection of H-polytopes.

• On the expressibility of piecewise-linear continuous functions as the di!erence of two piecewise-linear convex
functions, MP ’86
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Complexity of Testing Solution Concepts

↭ local minimality:

↭ testing local optimality for constrained QPs and degree-4 polynomials are both

co-NP-hard (Murty-Kabadi ’87).

↭ testing local optimality for a PA functions is weakly co-NP-hard (Nesterov ’13).

↭ stationarity:

↭ testing ε-stationarity (↔↑f(·)↔ ↗ ε) for polynomials is in P.

↭ no work on testing stationarity for general PA functions.

• Some NP-complete problems in quadratic and nonlinear programming, MP ’87.
• Gradient methods for minimizing composite functions, MP ’13.
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Main Result I: Computational Complexity

Theorem (T.-So ’25)

Fix any ε ↘ [0, 1/2). Let two convex PA functions h, g : Rd
⇐ R and a point x ↘ Rd

be given. For h→ g, the following hold:

↭ Testing the local minimality of 0 is strongly co-NP-hard.

↭ Testing 0 ↘ ϑ(h→ g)(x) + εB is strongly NP-hard.

Remarks.

↭ cp. (Nesterov ’13): weak co-NP-hardness; reduction from 2-PARTITION

(pseudo-polynomial time solvable).

↭ to our knowledge, first hardness result for testing (approximate) stationarity.
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Sum Rule Relaxation

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check

the “ε-stationarity” of h→ g by running:

↭ find the shortest vector g in ϑh(x)→ ϑg(x).

↭ if ↔g↔ ↗ ε: return True; else return False.

Remarks.

↭ ϑh(x) and ϑg(x) are polytopes.

↭ abusing convex subdi”erential sum rule ϑ(h+ g) = ϑh+ ϑg.

↭ e!ciently computable (a convex QP).

↭ sacrifice correctness for e!ciency (why?).
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Correctness and Sum Rule

↭ for smooth functions, we have ↑(h→ g) = ↑h→↑g.

↭ for Lipschitz continuous h, g, we only have ϑ(h→ g)(x) ⇑ ϑh(x)→ ϑg(x).
↭ 0 ↘ ϑh(x)→ ϑg(x) ⇓=⇔ 0 ↘ ϑ(h→ g)(x)

↭ in general, exact sum rule does not hold.

↭ e.g., {0} = ϑ(| · |→ | · |)(0) ⊋ ϑ| · |(0)→ ϑ| · |(0) = [→2, 2]

↭ goal: isolate functions that enjoy the best of both worlds.

↭ e!ciency without sacrificing correctness
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A New Geometric Notion

Definition (T.-So ’25)

Two polytopes A and B are called compatible if for any vectors a ↘ A and b ↘ B such

that a→ b ↘ ext(A→B), it holds

a+ b ↘ ext(A+B).
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Main Result II: Sum Rule

Theorem (T.-So ’25)

Let any convex PA functions h, g : Rd
⇐ R and a point x ↘ Rd

be given. The

following are equivalent.

1. ϑ(h→ g)(x) = ϑh(x)→ ϑg(x).

2. ϑh(x) and ϑg(x) are compatible polytopes.

Remarks on Compatibility.

↭ e!ciently verifiable if ϑh(x) and ϑg(x) are V-polytopes.

↭ in general, verification may require vertex enumeration.
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Transversality

To Improve Computability:

Defintion (T.-So ’25)

Given two convex PA functions h, g : Rd
⇐ R, we say functions h and g are transversal

at a point x ↘ Rd
if

par(ϑh(x)) ↖ par(ϑg(x)) = {0}.

Remarks.

↭ recall par(C) = a”(C → C).

↭ polynomial-time checkable for V- ,H-, and a!ne transformation of H-polytopes.
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Compatibility vs Transversality

Proposition (T.-So ’25)

For convex polytopes A and B, the following hold:

↭ Transversality of A and B implies compatibility.

↭ If A and B are zonotopes, compatibility implies transversality.

Remarks.

↭ transversality is an e!ciently verifiable su!cient condition.

↭ zonotopes:

↭ a subclass of polytopes generated by sum of segments.

↭ two-layer ReLU networks, ↼-margin loss SVM, penalized deep ReLU networks, etc.
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Interrelations of Various Conditions

Separability

[Roc85, Prop. 2.5]

Clarke Regularity

[Cla90, p. 40]

Surjectivity

[RW98, Ex. 10.7]

Transversality

Compatibility

ϑ(h→ g)(x) = ϑh(x)→ ϑg(x)

always

[TS25]

for zonotopes

[TS25]

[TS25]

applied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ gapplied to h→ g

convex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, gconvex PA h, g
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Robust Testing: Motivation

↭ For now, we only discuss exactexactexactexactexactexactexactexactexactexactexactexactexactexactexactexactexact testing 0 ↘ ϑf(x) + εB.

↭ In practice, iterations may never hit a nonsmooth point.

↭ Randomness/finite-precision in algorithm.

↭ Close to, but never hit (consider x ↙⇐ |x|).

↭ To be practical, we need a robust testing approach.

↭ If w is su!ciently (ϱ-)close to an ε-stationary w→
, certify

0 ↘ ϑf(w + ϱB) + εB.

↭ To separate the di!culties in exact/robust testing, we use an oracle:

↭ Given f , x, and ε ⇒ 0, the oracle decides whether 0 ↘ ϑf(x) + εB.
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Main Result III: Robust Testing

Corollary (T.-So ’25)

Consider {xn}n produced by the subgradient method on h→ g. For any ε ⇒ 0 and

ϱ > 0, the stopping criterion

0 ↘ ϑ(h→ g)(xT + ϱB) + εB

can be certified for a finite T ↘ N+ in (oracle) polynomial time.

Remarks.

↭ inspired by the termination of LPs.

↭ applicable to any algorithm with asymptotic convergence.

↭ when specialized to two-layer ReLU networks, this corollary resolves the open

problem mentioned in (Yun et al. ’19).

• E”ciently testing local optimality and escaping saddles for ReLU networks, ICLR ’19.
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Summary

I. Testing stationarity and local optimality of a point for PA functions are

computationally intractable, unless P = NP.

II. Compatibility is a necessary and su!cient (geometric) condition validating exact

sum rule, which facilitates e!cient ε-stationarity testing.

III. Using an ε-stationarity testing oracle, we can check (ε, ϱ)-NAS points in

polynomial time, which is a universal stopping rule.
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Thank You! Questions?
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