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Gradient Method for Nonconvex Functions

Gradient method for a S-smooth, nonconvex, lower bounded f:

Ty =z — B V().

Let A := f(xp) —inf f < 0.
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Ty =z — B V().

Let A := f(xp) —inf f < co. By descent lemma, we have

: BA
< —_—.
omin [V ()] < Cyf 7

Vf(x)| < e, in {z}E, where T can

Two Observations.

P there exists an e-stationary point xy, i.e.,
be set as O(B3A/e?) a priori.
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Gradient method for a S-smooth, nonconvex, lower bounded f:

Ty =z — B V().

Let A := f(xp) —inf f < co. By descent lemma, we have

: BA
< —_—.
omin [V ()] < Cyf 7

Vf(x)| < e, in {z}E, where T can

Two Observations.

P there exists an e-stationary point xy, i.e.,
be set as O(B3A/e?) a priori.

» such a point x; € {z;}1; can be identified efficiently by evaluating and
comparing {[|V f (z:) ]| }=s.
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Nonconvex Nonsmooth Functions

Pervasive in Modern Data Science.

» modern neural networks:
» (leaky) ReLU, max pooling, hinge loss, GANs, etc.

» max-affine regression, robust SVM, etc.

Figure: A nonconvex, nonsmooth, PA function.
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Nonconvex Nonsmooth Functions
Pervasive in Modern Data Science.
» modern neural networks:
» (leaky) ReLU, max pooling, hinge loss, GANs, etc.

» max-affine regression, robust SVM, etc.

An Immediate Question.

» what is the notion of “approximate stationarity” mimicking

V()| <,

and how to compute it?

Lai Tian (CUHK)
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Nonconvex Nonsmooth Functions (cont'd)

Two Generalized Notions.
> differentiation
> replace V[ with generalized (Clarke) subdifferential 0f:

Of (z) := conv {g : Iw, — ,Vf(x,) exists, Vf(x,) — g}.
> Of(x) = {Vf(x)}if fis C'; convex subdiff. if f is convex.
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Nonconvex Nonsmooth Functions (cont'd)

Two Generalized Notions.
> differentiation
> replace V[ with generalized (Clarke) subdifferential 0f:

Of(x) := conv {g s Jx, — @, Vf(x,) exists, Vf(x,) — g}.
> Of(x) = {Vf(x)}if fis C'; convex subdiff. if f is convex.
» approximation

> replace || - || < e with something computable.
> a trivial idea: we say x is e-stationary if 0 € 0f (x) + B,

or equivalently, dist(0,0f(x)) < e.
An e-Stationary Point is Uncomputable.

> if f(z) = |z — 7|, then dist(0,f(Q)) > 1.
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Nonconvex Nonsmooth Functions (cont'd)

Two Generalized Notions.
> differentiation
> replace V[ with generalized (Clarke) subdifferential 0f:

Of(x) := conv {g s Jx, — @, Vf(x,) exists, Vf(x,) — g}.
> Of(x) = {Vf(x)}if fis C'; convex subdiff. if f is convex.
» approximation

> replace || - || < e with something computable.
> a trivial idea: we say x is e-stationary if 0 € 0f (x) + B,

or equivalently, dist(0,0f(x)) < e.

An e-Stationary Point is Uncomputable.
» if f(z) = |x — 7|, then dist(0,0f(Q)) > 1.

> we need a computable notion of approximation.
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Near-Approximate Stationarity (NAS)

Definition (near-approximate stationarity; NAS)

We say x is an (g, d)-NAS point of f, if

0 cOf(x+ 0B) +eB.

> recall Of(x) = (N5 0f(x + 6B).
> also, (g,0)-NAS is e-stationarity.

Lai Tian (CUHK) January 13, 2025 6 /25



Near-Approximate Stationarity (NAS)

Definition (near-approximate stationarity; NAS)

We say x is an (g, d)-NAS point of f, if

0 cOf(x+ 0B) +eB.

> recall Of(x) = (N5 0f(x + 6B).
> also, (g,0)-NAS is e-stationarity.

0<€0f(y)+¢B
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Subgradient Method

» let a lower-bounded semialgebraic (e.g., PA) f be given.

e Stochastic subgradient method converges on tame functions, FOCM '20.
e No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.
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P consider a subgradient-type method:

Tyl =Ty — Q- gn With g, € 0f ().

» (Davis et al. '20) shows that if x,, — x*, then 0 € 9f(x*).

» in other words, for any € > 0 and § > 0, there exists a finite N such that xy is
(e,9)-NAS, or equivalently,
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Subgradient Method

» let a lower-bounded semialgebraic (e.g., PA) f be given.
P consider a subgradient-type method:

Tptl =Ty — Qp - gy With g, € 0f ().

» (Davis et al. '20) shows that if x,, — x*, then 0 € 9f(x*).

» in other words, for any € > 0 and § > 0, there exists a finite N such that xy is
(e,9)-NAS, or equivalently,

0c€ df(xn + 0B) + £B.

» unlike the smooth case, (T.-So, MP '24) shows that a priori estimation of N is
impossible, even when f is PA.

e Stochastic subgradient method converges on tame functions, FOCM '20.
e No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.
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Subgradient Method

>
>

>

>

let a lower-bounded semialgebraic (e.g., PA) f be given.

consider a subgradient-type method:

Tptl =Ty — Qp - gy With g, € 0f ().

(Davis et al. '20) shows that if &, — =*, then 0 € Of(x*).

in other words, for any € > 0 and § > 0, there exists a finite IV such that x is
(e,9)-NAS, or equivalently,

0 € Of(zy + 0B) + £B.

unlike the smooth case, (T.-So, MP '24) shows that a priori estimation of N is
impossible, even when f is PA.

Question. how can we identify such an xy from {x,},?

e Stochastic subgradient method converges on tame functions, FOCM '20.

e No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.
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Testing NAS: What and Why?

Given f : R? 5 R, & € R?, and ¢, > 0, decide whether

0cOf(x+0B) +eB.
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Why is Testing Interesting?

> why not? a “dual” task to finding stationary points.
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Testing NAS: What and Why?

Given f : R? 5 R, & € R?, and ¢, > 0, decide whether

0cOf(x+0B) +eB.

Why is Testing Interesting?
> why not? a “dual” task to finding stationary points.

» a universal stopping rule pertains to finite termination.
» quoting L. Vandenberghe for subgradient method in ECE236C:

(even for convex nonsmooth f) “no good stopping criterion.”

» if f is nonconvex nonsmooth (e.g., PA), when to stop?
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Piecewise Affine (PA) Functions

e On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex
functions, MP '86
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Piecewise Affine (PA) Functions

Theorem (Melzer '86)

Any PA function f : R* — R can be written as the difference of two convex PA
functions h,g : R? - R, ie., f=h—g.

Remarks.

» analytic approximation of piecewise smooth functions.

e On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex
functions, MP '86
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Piecewise Affine (PA) Functions

Theorem (Melzer '86)

Any PA function f : R* — R can be written as the difference of two convex PA
functions h,g : R? - R, ie., f=h—g.

Remarks.
» analytic approximation of piecewise smooth functions.

» we will consider h, g (locally) as support functions of projection of H-polytopes.

e On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex
functions, MP '86
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Complexity of Testing Solution Concepts

» local minimality:

» testing local optimality for constrained QPs and degree-4 polynomials are both
co-NP-hard (Murty-Kabadi '87).

e Some NP-complete problems in quadratic and nonlinear programming, MP '87.
e Gradient methods for minimizing composite functions, MP '13.
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Complexity of Testing Solution Concepts

» local minimality:

» testing local optimality for constrained QPs and degree-4 polynomials are both
co-NP-hard (Murty-Kabadi '87).

> testing local optimality for a PA functions is weakly co-NP-hard (Nesterov '13).

P stationarity:
> testing e-stationarity (||V f(-)]| < ¢) for polynomials is in P.

» no work on testing stationarity for general PA functions.

e Some NP-complete problems in quadratic and nonlinear programming, MP '87.
e Gradient methods for minimizing composite functions, MP '13.
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Main Result |: Computational Complexity

Theorem (T.-So '25)
Fix any € € [0,1/2). Let two convex PA functions h,g: R* = R and a point € R?
be given. For h — g, the following hold:

» Testing the local minimality of O is strongly co-NP-hard.

» Testing 0 € O(h — g)(x) + B is strongly NP-hard.

Remarks.

» cp. (Nesterov '13): weak co-NP-hardness; reduction from 2-PARTITION
(pseudo-polynomial time solvable).

e Computational complexity of norm-maximization, Combinatorica '90.
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Main Result |: Computational Complexity

Theorem (T.-So '25)
Fix any ¢ € [0,1/2). Let two convex PA functions h,g : R? — R and a point x € R?
be given. For h — g, the following hold:

» Testing the local minimality of O is strongly co-NP-hard.

» Testing 0 € d(h — g)(x) + B is strongly NP-hard.

Remarks.

» cp. (Nesterov '13): weak co-NP-hardness; reduction from 2-PARTITION
(pseudo-polynomial time solvable).

» to our knowledge, first hardness result for testing (approximate) stationarity.

» reduction from the problem of maximizing ¢1-norm over a centered parallelotope
(Bodlaender et al. '90).

e Computational complexity of norm-maximization, Combinatorica '90.
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Sum Rule Relaxation

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check
the “e-stationarity” of h — g by running:
» find the shortest vector g in Oh(x) — dg(x).

» if ||g|| < e: return True; else return False.
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Sum Rule Relaxation

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check
the “e-stationarity” of h — g by running:
» find the shortest vector g in Oh(x) — dg(x).

» if ||g|| < e: return True; else return False.

Remarks.
» Oh(x) and dg(x) are polytopes.
» abusing convex subdifferential sum rule 9(h + g) = 0h + 0g.
> efficiently computable (a convex QP).

» sacrifice correctness for efficiency (why?).
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Correctness and Sum Rule

» for smooth functions, we have V(h — g) = Vh — Vg.
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Correctness and Sum Rule

» for smooth functions, we have V(h — g) = Vh — Vg.

» for Lipschitz continuous h, g, we only have 9(h — g)(x) C Oh(x) — dg(x).
» 0 € Oh(x) —9g(x) == 0€ I(h—g)(x)

P in general, exact sum rule does not hold.
> eg, {0} =0(-[—|-)0)Z 9l [(0)—2a] |(0)=[-2,2]

» goal: isolate functions that enjoy the best of both worlds.
> efficiency without sacrificing correctness
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A New Geometric Notion

Definition (T.-So '25)
Two polytopes A and B are called compatible if for any vectors a € A and b € B such
that @ — b € ext(A — B), it holds

a+bcext(A+ B).
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A New Geometric Notion

Definition (T.-So '25)
Two polytopes A and B are called compatible if for any vectors a € A and b € B such
that @ — b € ext(A — B), it holds

a+bcext(A+ B).

— + ] »

Figure: Two Compatible Polytopes in R
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Main Result II: Sum Rule

Theorem (T.-So '25)

Let any convex PA functions h, g : R — R and a point © € R? be given. The
following are equivalent.

1. 9(h —g)(x) = Oh(x) — Dg(x).
2. Oh(x) and 0g(x) are compatible polytopes.

Remarks on Compatibility.

» efficiently verifiable if Oh(x) and dg(x) are V-polytopes.
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Main Result II: Sum Rule

Theorem (T.-So '25)

Let any convex PA functions h, g : R — R and a point © € R? be given. The
following are equivalent.

1. O(h —g)(x) = Oh(x) — Jg(x).
2. Oh(x) and 0g(x) are compatible polytopes.

Remarks on Compatibility.

» efficiently verifiable if Oh(x) and dg(x) are V-polytopes.

» in general, verification may require vertex enumeration.
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Transversality

To Improve Computability:
Defintion (T.-So '25)
Given two convex PA functions h, g : R? — R, we say functions & and ¢ are transversal

at a point « € RY if
par(dh(z)) N par(dg(x)) = {0}.

Remarks.
» recall par(C) = aff(C — C).
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Transversality

To Improve Computability:
Defintion (T.-So '25)
Given two convex PA functions h, g : R? — R, we say functions & and ¢ are transversal

at a point & € R? if
par(0h(x)) N par(dg(x)) = {0}.

Remarks.
» recall par(C) = aff(C — C).
» polynomial-time checkable for V- ,H-, and affine transformation of H-polytopes.
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Compatibility vs Transversality
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Compatibility vs Transversality
Proposition (T.-So '25)
For convex polytopes A and B, the following hold:
» Transversality of A and B implies compatibility.

» If A and B are zonotopes, compatibility implies transversality.

Remarks.
> transversality is an efficiently verifiable sufficient condition.
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Compatibility vs Transversality
Proposition (T.-So '25)
For convex polytopes A and B, the following hold:
» Transversality of A and B implies compatibility.

» If A and B are zonotopes, compatibility implies transversality.

Remarks.

> transversality is an efficiently verifiable sufficient condition.
» zonotopes:
» a subclass of polytopes generated by sum of segments.
» two-layer RelLU networks, p-margin loss SVM, penalized deep RelLU networks, etc.
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Interrelations of Various Conditions

Separability
[Roc85, Prop. 2.5]

Clarke Regularity
[Cla90, p. 40]

Surjectivity
[RW98, Ex. 10.7]

appliedto h—g

for zonotopes
[TS25]

Lai Tian (CUHK)

Transversality

Compatibility

H [TS25]

d(h — g)(z) = Oh(z) — dg(x)

always
[TS25]

convex PA h,g

January 13, 2025
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Rounding and Finite Termination
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Robust Testing: Motivation

» For now, we only discuss exact testing 0 € 9f(x) + cB.
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Robust Testing: Motivation

» For now, we only discuss exact testing 0 € 9f(x) + cB.

» In practice, iterations may never hit a nonsmooth point.

» Randomness/finite-precision in algorithm.
» Close to, but never hit (consider z — |z|).

» To be practical, we need a robust testing approach.
> |If w is sufficiently (J-)close to an e-stationary w*, certify

0 € 0f(w+ 0B) + eB.

» To separate the difficulties in exact/robust testing, we use an oracle:
» Given f, x, and £ > 0, the oracle decides whether 0 € 0f(x) + £B.

Lai Tian (CUHK) January 13, 2025

22 /25



Main Result Ill: Robust Testing

Corollary (T.-So '25)

Consider {x,,},, produced by the subgradient method on h — g. For any ¢ > 0 and
0 > 0, the stopping criterion

0€ d(h—g)(xr+IB) + B

can be certified for a finite T € N in (oracle) polynomial time.

Remarks.

» inspired by the termination of LPs.

e Efficiently testing local optimality and escaping saddles for ReLU networks, ICLR '19.
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Corollary (T.-So '25)

Consider {x,,},, produced by the subgradient method on h — g. For any ¢ > 0 and
0 > 0, the stopping criterion

0€ d(h—g)(xr+IB) + B

can be certified for a finite T € N in (oracle) polynomial time.

Remarks.
» inspired by the termination of LPs.
» applicable to any algorithm with asymptotic convergence.

» when specialized to two-layer ReLU networks, this corollary resolves the open
problem mentioned in (Yun et al. '19).

e Efficiently testing local optimality and escaping saddles for ReLU networks, ICLR '19.
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Summary

|. Testing stationarity and local optimality of a point for PA functions are
computationally intractable, unless P = NP.

Il. Compatibility is a necessary and sufficient (geometric) condition validating exact
sum rule, which facilitates efficient e-stationarity testing.

IIl. Using an e-stationarity testing oracle, we can check (g, )-NAS points in
polynomial time, which is a universal stopping rule.

Thank You! Questions?
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