Testing Approximate Stationarity Concepts for Piecewise Affine (PA) Functions

Lai Tian

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong (CUHK)

> Joint Work with ANTHONY MAN-CHO SO

January 13, 2025

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2025 Travel support for this presentation was provided by IBM

Outline

Introduction

Computational Complexity

Sum Rule, Compatibility, and Transversality

Rounding and Finite Termination

Summary

Gradient method for a β -smooth, nonconvex, lower bounded f:

$$\boldsymbol{x}_{t+1} := \boldsymbol{x}_t - \beta^{-1} \cdot \nabla f(\boldsymbol{x}_t).$$

Let $\Delta := f(\boldsymbol{x}_0) - \inf f < \infty$.

Gradient method for a β -smooth, nonconvex, lower bounded f:

$$\boldsymbol{x}_{t+1} := \boldsymbol{x}_t - \beta^{-1} \cdot \nabla f(\boldsymbol{x}_t).$$

Let $\Delta := f(\boldsymbol{x}_0) - \inf f < \infty$. By descent lemma, we have

$$\min_{0 \le t \le T} \|\nabla f(\boldsymbol{x}_t)\| \le C \sqrt{\frac{\beta \Delta}{T+1}}.$$

Gradient method for a β -smooth, nonconvex, lower bounded f:

$$\boldsymbol{x}_{t+1} := \boldsymbol{x}_t - \beta^{-1} \cdot \nabla f(\boldsymbol{x}_t).$$

Let $\Delta := f(\boldsymbol{x}_0) - \inf f < \infty$. By descent lemma, we have

$$\min_{0 \le t \le T} \|\nabla f(\boldsymbol{x}_t)\| \le C \sqrt{\frac{\beta \Delta}{T+1}}.$$

Two Observations.

• there exists an ε -stationary point x_t , i.e., $\|\nabla f(x_t)\| \leq \varepsilon$, in $\{x_t\}_{t=1}^T$, where T can be set as $O(\beta \Delta / \varepsilon^2)$ <u>a priori</u>.

Gradient method for a β -smooth, nonconvex, lower bounded f:

$$\boldsymbol{x}_{t+1} := \boldsymbol{x}_t - \beta^{-1} \cdot \nabla f(\boldsymbol{x}_t).$$

Let $\Delta := f(\boldsymbol{x}_0) - \inf f < \infty$. By descent lemma, we have

$$\min_{0 \le t \le T} \|\nabla f(\boldsymbol{x}_t)\| \le C \sqrt{\frac{\beta \Delta}{T+1}}.$$

Two Observations.

► there exists an ε -stationary point x_t , i.e., $\|\nabla f(x_t)\| \le \varepsilon$, in $\{x_t\}_{t=1}^T$, where T can be set as $O(\beta \Delta / \varepsilon^2)$ a priori.

▶ such a point $x_t \in \{x_t\}_{t=1}^T$ can be identified efficiently by evaluating and comparing $\{\|\nabla f(x_t)\|\}_{t=1}^T$.

Nonconvex Nonsmooth Functions

Pervasive in Modern Data Science.

- modern neural networks:
 - (leaky) ReLU, max pooling, hinge loss, GANs, etc.
- max-affine regression, robust SVM, etc.

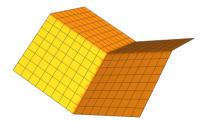


Figure: A nonconvex, nonsmooth, PA function.

Nonconvex Nonsmooth Functions

Pervasive in Modern Data Science.

- modern neural networks:
 - (leaky) ReLU, max pooling, hinge loss, GANs, etc.
- max-affine regression, robust SVM, etc.

An Immediate Question.

what is the notion of "approximate stationarity" mimicking

 $\|\nabla f(\boldsymbol{x}_t)\| \leq \varepsilon,$

and how to compute it?

Two Generalized Notions.

differentiation

• replace ∇f with generalized (Clarke) subdifferential ∂f :

$$\partial f(\boldsymbol{x}) := \operatorname{conv} \big\{ \boldsymbol{g} : \exists \boldsymbol{x}_n \to \boldsymbol{x}, \nabla f(\boldsymbol{x}_n) \text{ exists}, \nabla f(\boldsymbol{x}_n) \to \boldsymbol{g} \big\}.$$

• $\partial f(x) = \{\nabla f(x)\}$ if f is C^1 ; convex subdiff. if f is convex.

Two Generalized Notions.

differentiation

• replace ∇f with generalized (Clarke) subdifferential ∂f :

$$\partial f(\boldsymbol{x}) := \operatorname{conv} \big\{ \boldsymbol{g} : \exists \boldsymbol{x}_n \to \boldsymbol{x}, \nabla f(\boldsymbol{x}_n) \text{ exists}, \nabla f(\boldsymbol{x}_n) \to \boldsymbol{g} \big\}.$$

▶ $\partial f(x) = \{\nabla f(x)\}$ if f is C^1 ; convex subdiff. if f is convex.

<u>approximation</u>

• replace $\|\cdot\| \leq \varepsilon$ with something computable.

Two Generalized Notions.

differentiation

▶ replace ∇f with generalized (Clarke) subdifferential ∂f :

$$\partial f(\boldsymbol{x}) := \operatorname{conv} \left\{ \boldsymbol{g} : \exists \boldsymbol{x}_n \to \boldsymbol{x}, \nabla f(\boldsymbol{x}_n) \text{ exists}, \nabla f(\boldsymbol{x}_n) \to \boldsymbol{g}
ight\}.$$

•
$$\partial f(\boldsymbol{x}) = \{\nabla f(\boldsymbol{x})\}$$
 if f is C^1 ; convex subdiff. if f is convex.

- <u>approximation</u>
 - replace $\|\cdot\| \leq \varepsilon$ with something computable.
 - a trivial idea: we say x is ε -stationary if $\mathbf{0} \in \partial f(x) + \varepsilon \mathbb{B}$,

or equivalently, $\operatorname{dist}(\mathbf{0}, \partial f(\mathbf{x})) \leq \varepsilon$.

Two Generalized Notions.

differentiation

• replace ∇f with generalized (Clarke) subdifferential ∂f :

$$\partial f(oldsymbol{x}) := \operatorname{conv}\left\{oldsymbol{g}: \exists oldsymbol{x}_n
ightarrow oldsymbol{x},
abla f(oldsymbol{x}_n)
ightarrow oldsymbol{g}
ight\}$$

•
$$\partial f(\boldsymbol{x}) = \{\nabla f(\boldsymbol{x})\}$$
 if f is C^1 ; convex subdiff. if f is convex.

- <u>approximation</u>
 - replace $\|\cdot\| \leq \varepsilon$ with something computable.
 - ▶ a trivial idea: we say x is ε -stationary if $0 \in \partial f(x) + \varepsilon \mathbb{B}$,

or equivalently, $\operatorname{dist}(\mathbf{0},\partial f(\boldsymbol{x})) \leq \varepsilon.$

An *ɛ*-Stationary Point is Uncomputable.

• if
$$f(x) = |x - \pi|$$
, then dist $(0, \partial f(\mathbb{Q})) \ge 1$.

Two Generalized Notions.

differentiation

▶ replace ∇f with generalized (Clarke) subdifferential ∂f :

$$\partial f(\boldsymbol{x}) := \operatorname{conv} \big\{ \boldsymbol{g} : \exists \boldsymbol{x}_n \to \boldsymbol{x}, \nabla f(\boldsymbol{x}_n) \text{ exists}, \nabla f(\boldsymbol{x}_n) \to \boldsymbol{g} \big\}.$$

•
$$\partial f(\boldsymbol{x}) = \{\nabla f(\boldsymbol{x})\}$$
 if f is C^1 ; convex subdiff. if f is convex.

- <u>approximation</u>
 - replace $\|\cdot\| \leq \varepsilon$ with something computable.
 - ▶ a trivial idea: we say x is ε -stationary if $\mathbf{0} \in \partial f(x) + \varepsilon \mathbb{B}$,

or equivalently, $\operatorname{dist}(\mathbf{0},\partial f(\boldsymbol{x})) \leq \varepsilon.$

An *ɛ*-Stationary Point is Uncomputable.

- if $f(x) = |x \pi|$, then dist $(0, \partial f(\mathbb{Q})) \ge 1$.
- we need a computable notion of approximation.

Near-Approximate Stationarity (NAS)

Definition (near-approximate stationarity; NAS)

We say ${\boldsymbol x}$ is an $(\varepsilon,\delta)\text{-NAS}$ point of f, if

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

► recall
$$\partial f(\boldsymbol{x}) = \bigcap_{\delta > 0} \partial f(\boldsymbol{x} + \delta \mathbb{B}).$$

▶ also, $(\varepsilon, 0)$ -NAS is ε -stationarity.

Near-Approximate Stationarity (NAS)

Definition (near-approximate stationarity; NAS)

We say ${\boldsymbol x}$ is an $(\varepsilon,\delta)\text{-NAS}$ point of f, if

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

► recall
$$\partial f(\boldsymbol{x}) = \bigcap_{\delta > 0} \partial f(\boldsymbol{x} + \delta \mathbb{B}).$$

▶ also, $(\varepsilon, 0)$ -NAS is ε -stationarity.

$$\overbrace{\bullet \boldsymbol{x}}^{\boldsymbol{\delta}} \boldsymbol{y} \quad \boldsymbol{0} \in \partial f(\boldsymbol{y}) + \varepsilon \mathbb{B}$$

let a lower-bounded semialgebraic (e.g., PA) f be given.

[•] Stochastic subgradient method converges on tame functions, FoCM '20.

[•] No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.

let a lower-bounded semialgebraic (e.g., PA) f be given.

consider a subgradient-type method:

 $\boldsymbol{x}_{n+1} := \boldsymbol{x}_n - \alpha_n \cdot \boldsymbol{g}_n \quad \text{with} \quad \boldsymbol{g}_n \in \partial f(\boldsymbol{x}_n).$

[•] Stochastic subgradient method converges on tame functions, FoCM '20.

[•] No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.

let a lower-bounded semialgebraic (e.g., PA) f be given.

consider a subgradient-type method:

 $\boldsymbol{x}_{n+1} := \boldsymbol{x}_n - lpha_n \cdot \boldsymbol{g}_n$ with $\boldsymbol{g}_n \in \partial f(\boldsymbol{x}_n)$.

▶ (Davis et al. '20) shows that if $x_n \to x^*$, then $\mathbf{0} \in \partial f(x^*)$.

[•] Stochastic subgradient method converges on tame functions, FoCM '20.

[•] No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.

let a lower-bounded semialgebraic (e.g., PA) f be given.

consider a subgradient-type method:

 $\boldsymbol{x}_{n+1} := \boldsymbol{x}_n - lpha_n \cdot \boldsymbol{g}_n$ with $\boldsymbol{g}_n \in \partial f(\boldsymbol{x}_n)$.

▶ (Davis et al. '20) shows that if $x_n \to x^*$, then $\mathbf{0} \in \partial f(x^*)$.

▶ in other words, for any $\varepsilon \ge 0$ and $\delta > 0$, there exists a finite N such that x_N is (ε, δ) -NAS, or equivalently,

 $\mathbf{0} \in \partial f(\boldsymbol{x}_N + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

[•] Stochastic subgradient method converges on tame functions, FoCM '20.

[•] No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.

let a lower-bounded semialgebraic (e.g., PA) f be given.

consider a subgradient-type method:

 $\boldsymbol{x}_{n+1} := \boldsymbol{x}_n - lpha_n \cdot \boldsymbol{g}_n$ with $\boldsymbol{g}_n \in \partial f(\boldsymbol{x}_n)$.

▶ (Davis et al. '20) shows that if $x_n \to x^*$, then $\mathbf{0} \in \partial f(x^*)$.

▶ in other words, for any $\varepsilon \ge 0$ and $\delta > 0$, there exists a finite N such that x_N is (ε, δ) -NAS, or equivalently,

 $\mathbf{0} \in \partial f(\boldsymbol{x}_N + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

unlike the smooth case, (T.-So, MP '24) shows that <u>a priori</u> estimation of N is impossible, even when f is PA.

[•] Stochastic subgradient method converges on tame functions, FoCM '20.

[•] No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.

let a lower-bounded semialgebraic (e.g., PA) f be given.

consider a subgradient-type method:

 $\boldsymbol{x}_{n+1} := \boldsymbol{x}_n - lpha_n \cdot \boldsymbol{g}_n$ with $\boldsymbol{g}_n \in \partial f(\boldsymbol{x}_n)$.

▶ (Davis et al. '20) shows that if $x_n \to x^*$, then $\mathbf{0} \in \partial f(x^*)$.

▶ in other words, for any $\varepsilon \ge 0$ and $\delta > 0$, there exists a finite N such that x_N is (ε, δ) -NAS, or equivalently,

 $\mathbf{0} \in \partial f(\boldsymbol{x}_N + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

unlike the smooth case, (T.-So, MP '24) shows that <u>a priori</u> estimation of N is impossible, even when f is PA.

D Question. how can we identify such an x_N from $\{x_n\}_n$?

• No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians, MP '24.

[•] Stochastic subgradient method converges on tame functions, FoCM '20.

Given $f: \mathbb{R}^d \to \mathbb{R}$, $x \in \mathbb{R}^d$, and $\varepsilon, \delta \ge 0$, decide whether

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

Given $f: \mathbb{R}^d \to \mathbb{R}$, $x \in \mathbb{R}^d$, and $\varepsilon, \delta \ge 0$, decide whether

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

Why is Testing Interesting?

why not? a "dual" task to finding stationary points.

Given $f: \mathbb{R}^d \to \mathbb{R}$, $x \in \mathbb{R}^d$, and $\varepsilon, \delta \ge 0$, decide whether

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

Why is Testing Interesting?

- why not? a "dual" task to finding stationary points.
- a universal stopping rule pertains to finite termination.

Given $f: \mathbb{R}^d \to \mathbb{R}$, $x \in \mathbb{R}^d$, and $\varepsilon, \delta \ge 0$, decide whether

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

Why is Testing Interesting?

- why not? a "dual" task to finding stationary points.
- a universal stopping rule pertains to finite termination.
 - quoting L. Vandenberghe for subgradient method in ECE236C:

(even for convex nonsmooth f) "no good stopping criterion."

Given $f: \mathbb{R}^d \to \mathbb{R}$, $x \in \mathbb{R}^d$, and $\varepsilon, \delta \ge 0$, decide whether

 $\mathbf{0} \in \partial f(\boldsymbol{x} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

Why is Testing Interesting?

- why not? a "dual" task to finding stationary points.
- a universal stopping rule pertains to finite termination.
 - quoting L. Vandenberghe for subgradient method in ECE236C:

(even for convex nonsmooth f) "no good stopping criterion."

• if f is nonconvex nonsmooth (e.g., PA), when to stop?

Piecewise Affine (PA) Functions

[•] On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions, MP '86

Piecewise Affine (PA) Functions

Theorem (Melzer '86)

Any PA function $f : \mathbb{R}^d \to \mathbb{R}$ can be written as the difference of two convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$, i.e., f = h - g.

Remarks.

analytic approximation of piecewise smooth functions.

 $[\]bullet$ On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions, MP '86

Piecewise Affine (PA) Functions

Theorem (Melzer '86)

Any PA function $f : \mathbb{R}^d \to \mathbb{R}$ can be written as the difference of two convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$, i.e., f = h - g.

Remarks.

- > analytic approximation of piecewise smooth functions.
- we will consider h, g (locally) as support functions of projection of \mathcal{H} -polytopes.

[•] On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions, MP '86

Outline

Introduction

Computational Complexity

Sum Rule, Compatibility, and Transversality

Rounding and Finite Termination

Summary

Iocal minimality:

testing local optimality for constrained QPs and degree-4 polynomials are both co-NP-hard (Murty-Kabadi '87).

[•] Some NP-complete problems in quadratic and nonlinear programming, MP '87.

[•] Gradient methods for minimizing composite functions, MP '13.

- Iocal minimality:
 - testing local optimality for constrained QPs and degree-4 polynomials are both co-NP-hard (Murty-Kabadi '87).
 - testing local optimality for a PA functions is weakly co-NP-hard (Nesterov '13).

[•] Some NP-complete problems in quadratic and nonlinear programming, MP '87.

[•] Gradient methods for minimizing composite functions, MP '13.

- local minimality:
 - testing local optimality for constrained QPs and degree-4 polynomials are both co-NP-hard (Murty-Kabadi '87).
 - testing local optimality for a PA functions is weakly co-NP-hard (Nesterov '13).
- stationarity:
 - ▶ testing ε -stationarity ($\|\nabla f(\cdot)\| \leq \varepsilon$) for polynomials is in P.

[•] Some NP-complete problems in quadratic and nonlinear programming, MP '87.

[•] Gradient methods for minimizing composite functions, MP '13.

- Iocal minimality:
 - testing local optimality for constrained QPs and degree-4 polynomials are both co-NP-hard (Murty-Kabadi '87).
 - testing local optimality for a PA functions is weakly co-NP-hard (Nesterov '13).
- stationarity:
 - ▶ testing ε -stationarity ($\|\nabla f(\cdot)\| \leq \varepsilon$) for polynomials is in P.
- no work on testing stationarity for general PA functions.

[•] Some NP-complete problems in quadratic and nonlinear programming, MP '87.

[•] Gradient methods for minimizing composite functions, MP '13.

Main Result I: Computational Complexity

Theorem (T.-So '25)

Fix any $\varepsilon \in [0, 1/2)$. Let two convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ be given. For h - g, the following hold:

- ► Testing the local minimality of **0** is strongly co-NP-hard.
- Testing $\mathbf{0} \in \partial(h-g)(\mathbf{x}) + \varepsilon \mathbb{B}$ is strongly NP-hard.

Remarks.

 cp. (Nesterov '13): weak co-NP-hardness; reduction from 2-PARTITION (pseudo-polynomial time solvable).

[•] Computational complexity of norm-maximization, Combinatorica '90.

Main Result I: Computational Complexity

Theorem (T.-So '25)

Fix any $\varepsilon \in [0, 1/2)$. Let two convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ be given. For h - g, the following hold:

- ▶ Testing the local minimality of 0 is strongly co-NP-hard.
- Testing $\mathbf{0} \in \partial(h-g)(\mathbf{x}) + \varepsilon \mathbb{B}$ is strongly NP-hard.

Remarks.

- cp. (Nesterov '13): weak co-NP-hardness; reduction from 2-PARTITION (pseudo-polynomial time solvable).
- ▶ to our knowledge, first hardness result for testing (approximate) stationarity.

[•] Computational complexity of norm-maximization, Combinatorica '90.

Main Result I: Computational Complexity

Theorem (T.-So '25)

Fix any $\varepsilon \in [0, 1/2)$. Let two convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ be given. For h - g, the following hold:

- ► Testing the local minimality of 0 is strongly co-NP-hard.
- Testing $\mathbf{0} \in \partial(h-g)(\mathbf{x}) + \varepsilon \mathbb{B}$ is strongly NP-hard.

- cp. (Nesterov '13): weak co-NP-hardness; reduction from 2-PARTITION (pseudo-polynomial time solvable).
- ▶ to our knowledge, first hardness result for testing (approximate) stationarity.
- reduction from the problem of maximizing l₁-norm over a centered parallelotope (Bodlaender et al. '90).

[•] Computational complexity of norm-maximization, Combinatorica '90. Lai Tian (CUHK)

Outline

Introduction

Computational Complexity

Sum Rule, Compatibility, and Transversality

Rounding and Finite Termination

Summary

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check the " ε -stationarity" of h - g by running:

• find the shortest vector g in $\partial h(x) - \partial g(x)$.

▶ if $||g|| \le \varepsilon$: return True; else return False.

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check the " ε -stationarity" of h - g by running:

• find the shortest vector g in $\partial h(x) - \partial g(x)$.

• if $||g|| \leq \varepsilon$: return True; else return False.

Remarks.

 \blacktriangleright $\partial h(\boldsymbol{x})$ and $\partial g(\boldsymbol{x})$ are polytopes.

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check the " ε -stationarity" of h - g by running:

• find the shortest vector \boldsymbol{g} in $\partial h(\boldsymbol{x}) - \partial g(\boldsymbol{x})$.

• if $||g|| \leq \varepsilon$: return True; else return False.

- \blacktriangleright $\partial h(\boldsymbol{x})$ and $\partial g(\boldsymbol{x})$ are polytopes.
- abusing convex subdifferential sum rule $\partial(h+g) = \partial h + \partial g$.

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check the " ε -stationarity" of h - g by running:

- find the shortest vector g in $\partial h(x) \partial g(x)$.
- if $||g|| \leq \varepsilon$: return True; else return False.

- ▶ $\partial h(x)$ and $\partial g(x)$ are polytopes.
- ▶ abusing convex subdifferential sum rule $\partial(h+g) = \partial h + \partial g$.
- efficiently computable (a convex QP).

Sum Rule Relaxation (SRR). Given convex PA functions h, g and x, we check the " ε -stationarity" of h - g by running:

- find the shortest vector g in $\partial h(x) \partial g(x)$.
- if $||g|| \leq \varepsilon$: return True; else return False.

- ▶ $\partial h(x)$ and $\partial g(x)$ are polytopes.
- ▶ abusing convex subdifferential sum rule $\partial(h+g) = \partial h + \partial g$.
- efficiently computable (a convex QP).
- sacrifice correctness for efficiency (why?).

• for smooth functions, we have $\nabla(h-g) = \nabla h - \nabla g$.

- for smooth functions, we have $\nabla(h-g) = \nabla h \nabla g$.
- for Lipschitz continuous h, g, we only have ∂(h − g)(x) ⊆ ∂h(x) − ∂g(x).
 0 ∈ ∂h(x) − ∂g(x) ⇒ 0 ∈ ∂(h − g)(x)

• for smooth functions, we have $\nabla(h-g) = \nabla h - \nabla g$.

for Lipschitz continuous h, g, we only have ∂(h − g)(x) ⊆ ∂h(x) − ∂g(x).
 0 ∈ ∂h(x) − ∂g(x) ⇒ 0 ∈ ∂(h − g)(x)

in general, exact sum rule does not hold.

• e.g.,
$$\{0\} = \partial(|\cdot| - |\cdot|)(0) \subsetneq \partial|\cdot|(0) - \partial|\cdot|(0) = [-2, 2]$$

• for smooth functions, we have $\nabla(h-g) = \nabla h - \nabla g$.

for Lipschitz continuous h, g, we only have ∂(h − g)(x) ⊆ ∂h(x) − ∂g(x).
 0 ∈ ∂h(x) − ∂g(x) ⇒ 0 ∈ ∂(h − g)(x)

in general, exact sum rule does not hold.
 e.g., {0} = ∂(| · | − | · |)(0) ⊊ ∂| · |(0) − ∂| · |(0) = [−2, 2]

goal: isolate functions that enjoy the best of both worlds.

efficiency without sacrificing correctness

A New Geometric Notion

Definition (T.-So '25)

Two polytopes A and B are called compatible if for any vectors $a \in A$ and $b \in B$ such that $a - b \in ext(A - B)$, it holds

 $\boldsymbol{a} + \boldsymbol{b} \in \text{ext}(A + B).$

A New Geometric Notion

Definition (T.-So '25) Two polytopes A and B are called compatible if for any vectors $a \in A$ and $b \in B$ such that $a - b \in ext(A - B)$, it holds $a + b \in ext(A + B)$.

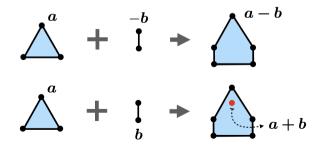
\mapsto + : \Rightarrow \square

Figure: Two Compatible Polytopes in \mathbb{R}^2 .

A New Geometric Notion

Definition (T.-So '25) Two polytopes A and B are called compatible if for any vectors $a \in A$ and $b \in B$ such that $a - b \in ext(A - B)$, it holds

 $\boldsymbol{a} + \boldsymbol{b} \in \text{ext}(A + B).$



Lai Tian (CUHK)

Main Result II: Sum Rule

Theorem (T.-So '25)

Let any convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ be given. The following are equivalent.

1.
$$\partial(h-g)(\boldsymbol{x}) = \partial h(\boldsymbol{x}) - \partial g(\boldsymbol{x}).$$

2. $\partial h(x)$ and $\partial g(x)$ are compatible polytopes.

Remarks on Compatibility.

• efficiently verifiable if $\partial h(x)$ and $\partial g(x)$ are \mathcal{V} -polytopes.

Main Result II: Sum Rule

Theorem (T.-So '25)

Let any convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ be given. The following are equivalent.

1.
$$\partial(h-g)(\boldsymbol{x}) = \partial h(\boldsymbol{x}) - \partial g(\boldsymbol{x}).$$

2. $\partial h(x)$ and $\partial g(x)$ are compatible polytopes.

Remarks on Compatibility.

- efficiently verifiable if $\partial h(x)$ and $\partial g(x)$ are \mathcal{V} -polytopes.
- ▶ in general, verification may require vertex enumeration.

Transversality

To Improve Computability:

Defintion (T.-So '25)

Given two convex PA functions $h, g : \mathbb{R}^d \to \mathbb{R}$, we say functions h and g are transversal at a point $x \in \mathbb{R}^d$ if

 $\mathsf{par}(\partial h(\boldsymbol{x})) \cap \mathsf{par}(\partial g(\boldsymbol{x})) = \{\mathbf{0}\}.$

▶ recall
$$par(C) = aff(C - C)$$
.

Transversality

To Improve Computability:

Defintion (T.-So '25)

Given two convex PA functions $h, g: \mathbb{R}^d \to \mathbb{R}$, we say functions h and g are transversal at a point $x \in \mathbb{R}^d$ if

 $\mathsf{par}(\partial h(\boldsymbol{x})) \cap \mathsf{par}(\partial g(\boldsymbol{x})) = \{\mathbf{0}\}.$

Remarks.

• recall par(C) = aff(C - C).

▶ polynomial-time checkable for V- ,H-, and affine transformation of H-polytopes.

Proposition (T.-So '25)

For convex polytopes A and B, the following hold:

- ► Transversality of A and B implies compatibility.
- ▶ If A and B are zonotopes, compatibility implies transversality.

Remarks.

transversality is an efficiently verifiable sufficient condition.

Proposition (T.-So '25)

For convex polytopes A and B, the following hold:

- ► Transversality of A and B implies compatibility.
- ▶ If A and B are zonotopes, compatibility implies transversality.

- transversality is an efficiently verifiable sufficient condition.
- zonotopes:
 - > a subclass of polytopes generated by sum of segments.

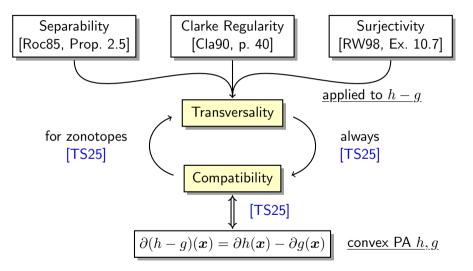
Proposition (T.-So '25)

For convex polytopes A and B, the following hold:

- ► Transversality of A and B implies compatibility.
- If A and B are zonotopes, compatibility implies transversality.

- transversality is an efficiently verifiable sufficient condition.
- zonotopes:
 - > a subclass of polytopes generated by sum of segments.
 - ▶ two-layer ReLU networks, *ρ*-margin loss SVM, penalized deep ReLU networks, etc.

Interrelations of Various Conditions



Outline

Introduction

Computational Complexity

Sum Rule, Compatibility, and Transversality

Rounding and Finite Termination

Summary

Robust Testing: Motivation

For now, we only discuss <u>exact</u> testing $\mathbf{0} \in \partial f(\mathbf{x}) + \varepsilon \mathbb{B}$.

Robust Testing: Motivation

- For now, we only discuss exact testing $\mathbf{0} \in \partial f(\boldsymbol{x}) + \varepsilon \mathbb{B}$.
- ▶ In practice, iterations may never hit a nonsmooth point.
 - Randomness/finite-precision in algorithm.
 - Close to, but never hit (consider $x \mapsto |x|$).

Robust Testing: Motivation

For now, we only discuss <u>exact</u> testing $\mathbf{0} \in \partial f(\mathbf{x}) + \varepsilon \mathbb{B}$.

- In practice, iterations may never hit a nonsmooth point.
 - Randomness/finite-precision in algorithm.
 - Close to, but never hit (consider $x \mapsto |x|$).
- To be practical, we need a robust testing approach.
 - If w is sufficiently (δ -)close to an ε -stationary w^* , certify

 $\mathbf{0} \in \partial f(\boldsymbol{w} + \delta \mathbb{B}) + \varepsilon \mathbb{B}.$

To separate the difficulties in exact/robust testing, we use an oracle:

• Given f, x, and $\varepsilon \ge 0$, the oracle decides whether $\mathbf{0} \in \partial f(x) + \varepsilon \mathbb{B}$.

Main Result III: Robust Testing

Corollary (T.-So '25)

Consider $\{x_n\}_n$ produced by the subgradient method on h - g. For any $\varepsilon \ge 0$ and $\delta > 0$, the stopping criterion

$$\mathbf{0} \in \partial(h-g)(\boldsymbol{x}_T + \delta \mathbb{B}) + \varepsilon \mathbb{B}$$

can be certified for a finite $T \in \mathbb{N}_+$ in (oracle) polynomial time.

Remarks.

inspired by the termination of LPs.

[•] Efficiently testing local optimality and escaping saddles for ReLU networks, ICLR '19. Lai Tian (CUHK)

Main Result III: Robust Testing

Corollary (T.-So '25)

Consider $\{x_n\}_n$ produced by the subgradient method on h-g. For any $\varepsilon \ge 0$ and $\delta > 0$, the stopping criterion

$$\mathbf{0} \in \partial(h-g)(\boldsymbol{x}_T + \delta \mathbb{B}) + \varepsilon \mathbb{B}$$

can be certified for a finite $T \in \mathbb{N}_+$ in (oracle) polynomial time.

- inspired by the termination of LPs.
- > applicable to **any** algorithm with asymptotic convergence.

[•] Efficiently testing local optimality and escaping saddles for ReLU networks, ICLR '19. Lai Tian (CUHK)

Main Result III: Robust Testing

Corollary (T.-So '25)

Consider $\{x_n\}_n$ produced by the subgradient method on h - g. For any $\varepsilon \ge 0$ and $\delta > 0$, the stopping criterion

$$\mathbf{0} \in \partial(h-g)(\boldsymbol{x}_T + \delta \mathbb{B}) + \varepsilon \mathbb{B}$$

can be certified for a finite $T \in \mathbb{N}_+$ in (oracle) polynomial time.

- inspired by the termination of LPs.
- > applicable to **any** algorithm with asymptotic convergence.
- when specialized to two-layer ReLU networks, this corollary resolves the open problem mentioned in (Yun et al. '19).

[•] Efficiently testing local optimality and escaping saddles for ReLU networks, ICLR '19. Lai Tian (CUHK)

Outline

Introduction

Computational Complexity

Sum Rule, Compatibility, and Transversality

Rounding and Finite Termination

Summary

I. Testing stationarity and local optimality of a point for PA functions are computationally intractable, unless P = NP.

- I. Testing stationarity and local optimality of a point for PA functions are computationally intractable, unless P = NP.
- II. Compatibility is a necessary and sufficient (geometric) condition validating exact sum rule, which facilitates efficient ε -stationarity testing.

- I. Testing stationarity and local optimality of a point for PA functions are computationally intractable, unless P = NP.
- II. Compatibility is a necessary and sufficient (geometric) condition validating exact sum rule, which facilitates efficient ε -stationarity testing.
- III. Using an ε -stationarity testing oracle, we can check (ε, δ) -NAS points in polynomial time, which is a universal stopping rule.

- I. Testing stationarity and local optimality of a point for PA functions are computationally intractable, unless P = NP.
- II. Compatibility is a necessary and sufficient (geometric) condition validating exact sum rule, which facilitates efficient ε -stationarity testing.
- III. Using an ε -stationarity testing oracle, we can check (ε, δ) -NAS points in polynomial time, which is a universal stopping rule.

Thank You! Questions?